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Abstract—The free vibrations of rotating laminated filament-wound cylindrical shells have been
investigated. The exact solution procedure was formulated for general field equations and general
boundary conditions. arbitrary combinations of lumina materials, and fiber orientation. A para-
metric investigation of the free vibrations' spectra has been carried out. The main characteristics of
spinning composite shells are presented and discussed as functions of the filament-winding angles,
various layups and the rotational velocity.

INTRODUCTION

The dynamic behavior of spinning shells has been investigated for over a century. Since the
appearance of Bryan's (1890) paper first discovering the traveling-modes phenomenon,
numerous studies have been published. In particular, the following studies are noted:
Carrier (1945), Di Taranto and Lessen (1964), Fox and Hardie (1985), Huang and Soedel
{1988a.b), Padovan (1973) and Socdel (1976, 1981).

There are various engincering applications of spinning cylindrical shells—namely where
the angular velocity vector coincides with the shell axis—such as high-speed centrifugal
scparators and gas turbines for high-power aircraft engines. Other applications arc associ-
ated with spinning satellite structures and similar spaceerafts,

Until recently most of the research efforts had been devoted to the dynamic behavior
of rotating isetropic shells. A review of analyticil methods used to determine the modal
characteristics of non-rotating cylindrical shells may be found in Forsberg's report (1966).
The free and foreed vibrations of spinning isotropic shells were treated by several inves-
tigators, in particular it is worth mentioning the work of Huang and Socdel (1988b). Their
analysis of the free and forced vibrations of simply-supported rotating isofropic cylindrical
shells resulted with the conclusion that the effect of rotation is mainly in bifurcating the
natural frequencies into two branches of forward and backward waves.

The vibration analysis of anisotropic composite shells is of importance in view of the
current interest in designing with composite materials. Not too many investigations dealt
with this new field of application. The work of Greenberg and Stavsky (1981) is noted,
presenting the vibration analysis of non-rotating laminated composite cylindrical shells.

Padovan (1975) was secmingly the first to consider the effects of material anisotropy
on spinning cylindrical shells. In this investigation perturbational finite-clement approxi-
mations were used to study the frequency and buckling eigenvalues of prestressed shells.

In what follows, a general formulation of the dynamic behavior of spinning composite
cylindrical shells—within the framework of Love's shell theory—is given for arbitrary
boundary conditions. The linear governing ficld equations are formulated for smali vibra-
tory motion around the rotated cquilibrium state. The cquations of motion in terms of
displacements are expressed by “structural” and “dynamic™ operators. A closed-form
solution is given for the presented lincar system of homogencous diflerential cquations,
Finally, a parametric study of the free vibrations spectra of rotating shells is presented and
discussed.

THEORY
Notation
The cylindrical)shell under discussion is shown in Fig. 1a. The rotation is expressed by
the velocity vector Q given by 0% where Q is a scalar that may represent both positive and
negative values.
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Fig. 1. The cylindrical shell geometry.

The non-dimensional (with respect to the shell radius @) axial coordinate is denoted
by g’( = ~). the circumferential direction is denoted by § and the direction normal to the
a

surface by { (see Fig. 1b). The shell is assumed to be made of luyers of filament-wound
orthotropic materials, the thicknesses of which are denoted by 1, (see Fig. ic).

Equations of motion

The three-dimensional equations of motion for an infinitesimal element in polar coor-
dinates in the rotating frame may be written, for the case of time-independent density, as
follows [see e.g. Stavsky and Loewy (1971)]:

l
rrr,r+ ; t(h.ﬂ+ 1":r.: + (Tfl - f,"))/f = par ( I a)
1 2
T+ ; T+ T0.:+ ; Ty = My (1b)
| l
Tt "_ o+ Tzt r T, = pd; (lc)

where r is a radial coordinate and q,, a, and a. are the components of the acceleration vector
in the rotating frame given in the 7, , # directions, respectively. By dynamic considerations
it is possible to show that:
a, = i, —Q*(a+u,) —2Qu, (2a)
ay = iig—Quy+2Qu, (2b)

a. =i (2¢)
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where u,, uy and u, are the elastic displacements in the 7, §, 7 directions, respectively, and
(") denotes differentiation with respect to time. Note that the terms underlined with a single
line are those stemming from Coriolis acceleration and the one with a double line is an
inertia term which is independent of the elastic deformation. Assuming linear displacement
fields across the shell thickness [see Stavsky and Loewy (1971)], integrating eqns (la-
c) and substituting the more convenient notation u=u, v =uy, w= —u, dr = —d¢,
dx = dz = a d¢, yields three force equations (see Appendix A for the definition of stress
resultants and inertia terms) :

_ 1
Noco+ Nee "Na;(v.w—w.:) = aRoa; (3a)
No.e‘*"Nw.o—Qe = aRqay (3b)
_ 1 1
Qg_g +Qoy+ No<l + ;U_g + ‘—, W_gg) = aRoac (3¢0)

where it was assumed that due to the rotation, the circumferential force, N,. is very large
in comparison with the other stress resultants and therefore its product with the dis-
placements has been retained. N, is decomposed to the sum of the initial value N} and the
vibratory force N,. Assuming that the boundary conditions are enforced only after spinning
has been attained, it can be shown that:

Nli) = Roazﬂz. (4)

- - 1 .
In addition, N, should be replaced by N.,(l + - u_:) in the second and third equations of

motion to account for the stretching of the middle surface. Retaining linear terms eqns (3a-
¢) take the form:

Noco+ Neg = aRoag+ RoaQ* (00— W) (52)

Ng.u + N‘-y_y - Qa = aRoa,, i R?,aZQu’w (Sb)
l 1 1

Q:.g + Qy,o + Nu = aRoa; - ROGZQZ (l + ;U‘n + :1 W g9 + ;u_:). (SC)

In addition, multiplying eqns (2b—c) by { d{ and integrating, yields a pair of moment
equations from which Q, and Q: are obtained and substituted in eqns (4b,c).

Stress-strain relations are based on Hooke's law for an aeolotropic shell. In terms of
the elastic stiffness moduli it is possible to express the stress—strain relations as:

T Ey: Ey E,|| &
1'9 = Eog Ea, 39 . (6)
2 47) symm. E, JlLew

Assuming linear strain variation across the shell thickness enables the strains to be expressed
as functions of the strains at the reference surface €. &), €3 and the curvature changes &,
Ko, Kzg DY :
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(83.8;;, 8:9) = (8?. £3~ 6?;?) +C{K:. [T K:g}. (?)

Consequently, based on the definitions in Appendix A. the shell stress-strain relations
become:

FN:G FA:: A:H A=_‘ B-: B:p Bjx 8‘:’
Ny Ay Ag Ao Bi: Bi By &?

N K A 15 A v A » B N B it B A8 S?H
. |7\ 8. B, B, Dy Dy Diflx | ®
M, By: Bw By Do Du Dy, Ry

I‘II N:) 8 N B.VU Bss ’ D

— ol __ — .

In addition, the curvature terms may be expressed in terms of the displacements of the
reference surface u”, ¢°, w’ by:

. o y?
Ke=— 3% (92)
I [{] })
Ky = — ug (o +wum) (9b)
{ o D €
Ky = — P (r:+wiy). 9¢)

Substitution of eqns (Ya ¢) into eqn (7) and cyns (7) and (9a ¢) into cyn (8) yiclds the
stress -resultant-displacement relations.

Displacement equations of motion
The vibratory motion of the entire system is assumed to be harmonic with the same
period, so that the time and spatial variations may be separated as:

(H. , H.') = (Uﬂs')' UZ(:)v Uj(,‘;) Rt +nih) (‘0)

where @ is the vibratory frequency and » is the circumferential mode. Note that in the
following discussion, # is assumed o be known.

Substituting the above-mentioned stress- resultant-displacement relations in eqns (4a-¢)
enables, with the aid of egn (10), the following lincar system of equations to be formulated :

U, q:
(LU p =<Squ (ty
U, UR

where [L] contains “structural operators™, [ Lg]. which depend on the elastic stiffness moduli
and geometrical propertics and “rotational™ operators, {L}. which depend on the angular
velocity components, the natural frequency, geometrical propertics and the density dis-
tribution. g.. g, and g. arc given external forcing terms. The operators [Lg] and [Lg] are
shown in Appendix B. It should be noted that the format of eqn (11) is generic and may
be kept in case of other eighth-order shell theories.
In order to investigate the case of free vibrations, one should assume . = ¢, = ¢; =

and eqns (11) become a lincar homogeneous system of equations.
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Method of solution

Since the functional operators are linear with constant coefficients, it is possible to
express the displacements as a displaucement function ¢(Z) [see Greenberg and Stavsky
(1981)]:

[U|~ U.. U}] = [9.‘1-93:.931105(6) (l2)

where 2, are the minors of det (L,;) and the displacement function ¢ is the solution of the
homogeneous equation

det(L,;)¢ = 0. (13)

Generally. the operator det (L,)) is eighth-order so the solution of eqn (13) is of the form:
8

¢=3 ren (19
k=1

where g, are the roots of the cighth-degree polynomial auxiliary equation and r, are
constants to be determined by the boundary conditions which are also written in terms of
ri and .

Since each type of boundary condition is associated with a combination of resultant
forces, moments, displacements and their derivatives, it is always possible to express the
forces und moments in terms of the displacements by\:

WV =N (15a)

where
[N} = NNy Nogo M. My, Moy, Qe Q) (15b)
' = UV Uy Un Us o Us U U Us . (15¢)

Consequently, for each type of boundary condition it is possible to construct a matrix, [R],
which consists of the appropriate rows of [N,]. For example, for the case of a shell which
is simply-supported, of type SS3, atits twoends [i.e. N. = M, = v =w =0for & = (0, l/a)]
one may write:

N
M.

Iz

= [R] {u}. (16)
W

The displacements vector {u} is related to r, and g, by the equation:
uj = [P){r} (17

where the elements of the matrix [P] are given by :
49
P, = (Z dyk)p} 2> et (i=1.3.)=18) (18a)
k=1

9

P,={ Y dutkys ") et (i=4.6.j=1.8) (18b)
=1
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9
P, = ('Z dn(k)#f*’""> e (i=7.9.j=18). (18¢)
=1

The d;(k) elements are the coefficients of the 2, operator, namely :

dk—l
2, = Zd,j(k)—diT(l—) (19)
k S

and the vector {r} is defined by :
{r}T=Crira.re). (20)

Thus, combining eqns (16), (17) enables us to write (for the case of a simply-supported
shell) :

r Neo )
Mo
Uy
Wi _ _[!{]‘.113::0)]“] ~
Ny >_ [[R] 1Patn {r} =1T)r}. )
M.,

oy

Win

The solution procedure is therefore initiated by assuming a value for the vibration
frequency w. Then, eqn (13) is solved and the roots g, are obtained. At this stage, the
determinant of the matrix [77] is calculated. This procedure is repeated until the value of w
that causes the vanishing of the determinant of {T7] is obtained. For that frequency, the
eigenvalues of {r} are calculated and ¢, U,, U, and U, are determined by eqns (14), (12).

Figure 2 presents a typical variation of the determinant of the matrix [T] with frequency
(values are normalized). As shown, the imaginary part dominates the problem in this case

and its vanishing at w = 820 rud s~ ' and w = —2000 rad s~ ' represent the first two natural
frequencies.
L2 qge0
ne8
1/a =i
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Fig. 2. Typical variation of the boundary matrix determinant with frequency.
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RESULTS AND DISCUSSION

The following section contains results of a parametric investigation of spinning lami-
nated filament-wound cylindrical shells. Ultra-high modulus graphite-epoxy has been
chosen for the following examples. The material properties are:

E” = 3)( lO”Nm—z
Ey;; =62x10°Nm™?
E¢e =41x10°Nm~?
v 2= 0.26
p=16x10kgm™?3,
(i) Single-lavered anisotropic shells

In the case of the non-vanishing spinning velocity, the solution has two branches which

correspond to the cases of forward- and backward-traveling modes or to the cases of

positive or negative spinning velocity (which may also be interpreted as positive and negative
eigenvalues). [n what follows, the shell's natural frequency (w) will be presented as a function
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Fig. 3a. Natural frequency as a function of the spinning angular velocity for simply-supported shetl
and a single lamina at « = 0 (Q > 0).
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Fig. 3b. Natural frequency as a function of the spinning angular velocity for simply-supported shell
and a single lamina ata =0 (Q < 0).
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of the (positive or negative) spinning velocity (Q). different values of circumferential mode
number and laminate-winding angle (x). In all cases the shell’s geometry 1s given by { a = |
and t u = 0.01.

Figures 3a.b present the natural frequency for the case of simply-supported shells (SS3
boundary conditions. i.e. r = w = N: = M. = 0 at both ends) for a single lamina at x = 0.
Generally. by looking for the lowest natural frequency for each spinning speed. it may be
seen that the higher circumferential modes dominate the behavior for low values of spinning
speed. As Q is increased. lower modes become more and more effective. As a result, the
dominant modes for high values of Q (>700 rad s~ ') are 0 and 1 for the cases of positive
and negative spinning speeds. respectively, while the dominant modes for Q = 0 are 8 and
9 in both cases. This phenomenon results from the trend of low cirumferential modes (n = 0,
1) to decrease with spinning speed and the opposite trend observed in the case of high
circumferential modes (# > 3). It should be noted that as expected for n = 0 the results are
invariant to the sign of the spinning velocity.

Figures 4a.b present similar results obtained for these simply-supported boundary
conditions for orientation angle x = 90 . Examination of these results shows several inter-
esting trends. First, for the case of Q > 0, as « is increased, all modes begin to show a
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Fig. 4. Nutural frequency as a function of the spinning angular velocity for simply-supported shell
and a single lamina at 2 = 90" (Q > 0).
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Fig. 4b. Natural frequency as a function of the spinning angular velocity for simply-supported shell
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Fig. Sa. Natural frequency as a function of the spinning angular velocity for simply-supported shell
and a single lamina at x = 30° (Q > 0).
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Fig. 5b. Natural frequency as a function of the spinning angular velocity for simply-supported shell
and a single lamina at a2 = 30 (Q < 0).

tendency to increase their natural frequency with speed. In addition, enlarging « tends to
increase the natural frequency of all the modes while the lower modes are more influenced.
Figures 5a,b present an intermediate case (x = 30°) where similar characteristics may be
observed.

Following the replacement of the boundary conditions by the fully-clamped case RF4
(i.e. u = v = w = w, = 0 at both cnds), additional similar calculations of the shell’s natural
frequency as a function of the spinning speed have been carried out. Figures 6a,b show the
corresponding casc of x = 0. Compared with the “simply-supported™ case (Figs 3a,b), one
may observe the relatively-high natural frequency in this case. The trend of the high
circumferential modes to increase with the natural frequency is also noted in this case.

(i1) Laminated anisotropic shells

Additional cases of shell structures which consist of three layers of different thicknesses
and winding angles were examined for the case of clamped boundary conditions. In these
cases the shell was assumed to be three-ply. an inner ply of thickness 4/2 oricnted at & = 0°
and two outer-plies of thicknesses /- d and / (! —d), respectively, both oriented at a = 90°.
The natural frequencies in these cases are shown in Figs 7a,b as functions of d (0 € d < 0.5)
along with the corresponding circumferential modes for some values of d. Studying the case
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Fig. 6a. Natural frequency as a function of the spinning angular velocity for clamped shell and a
single lamina at x = 0 (Q > 0).
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Fig. 6b. Natural frequency as a function of the spinning angular velocity for clumped shell and a
single lamina at x = 0(Q < 0),

of Q = 0 (Fig. 7a) shows significant changes as a function of « in the natural frequency
which attains, for d = 0.25, a value of about 30% higher than that obtained for the two-
layer shells of d = 0 and 0.5. However, examination of these variations in the case of
Q = 200 rad s~ ' Fig. 7b shows that the differences between the cases of d = 0 and d = 0.25
arc only 7%. This is due to the fact that spinning becomes the dominant component in the
determination of the shell “equivalent stiffness™ and since the material density is not changed
with d, the changes in natural frequencies are small.

The natural frequencics for some other simply-supported shell constructions as func-
tions of the spinning velocity are presented in Fig. 8. Note that except for the case of a
single laminate at zero fiber orientation (0, 1, 0), the characteristics of all other cases show
a monotonic growth of the natural frequencies with the spinning velocity.

CONCLUDING REMARKS

The study of dynamic characteristics of rotating laminated filament-wound cylindrical
shells has been presented by using a closed-form solution of a general type of field equations
and arbitrary boundary conditions.
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The results provide an tnsight into the sensitivity of the resulting natural frequencies
to the spinning speed and to small variations in the combinations and ordering of the
laminates.
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APPENDIX A

The following are definitions of various.terms that were mentioned during the derivations.
Resultant forees :

N
(VNN =J (.0 Toe Ty ) dE (A1)
hl
‘h:
(Q:-Qa) = J (T;;' ) ds. (A2)
"I
Resultunt moments :
h:
(1”;- ~"u. /"u;) = J‘ (t;- Tys !.,¢)\:ds'~ (AJ)
Ay
Inertia constants
hy
(Ry, Ry, R) =J’ (LEEnd. (A%)
1
Rotational accelerations
[
adyoa: = J (a.ay. —a,) pdi. (AS)
Rn hy

The clements of the matrix in eqn (8):

(4,.8,.D) = j(l-C-C’)E.,dC (ij=45.0.0). (A6)
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APPENDIX B

The operators Lg; are given by :

= —nld,( Y4+ 2ind o )+ A )se (B)
2 1 . l 2
=—n A,a';B.o ()+in A,.,+A;a—;(359+28,,) ( )+ A~ (-‘le (e (B2)
=n|n ; w0 A +|n a(- ' ) — Az () — m:: el Vo= 2B e 3
N ) . t 1
==n*|lAdp~=-By ) V+in| A, +AH==(B,y+B) () +| A:—-B. ) ). (BY)
a a ad
p 2 1 . b] 3 3 2
= ~n*| Aw—-Bw+ < Du ()+in A, —=-B,+ =D, |( Jo+l A — = B .+ =D, );: (BS)
a a* a u- u a’

. W { { .t [ l
= m[‘"'"(“&m"‘ - D:nr)‘/‘rnp+ - B:m]( )[3"" ‘(Bu.— *Du.>—:".u+ ~ B,,,]( ):
a a a [ a a

( [ 1 l
-in-[ﬂ,,C +2B,— —(Dy +ZD.,,)]( )or “(— B+ - Du-)( )e: (B6)
a a 3 a

= Ls\s (B7)

.| I l ,l 4 2
= i"[—"' "("’Brm‘" - Dm!)“/‘m"' ’”ml]( )["‘ - (3”\0“ - D‘,,)-— Ay + - th]( ).:
d d a a [ [

-
—in l’ [2[".... + 8By~ : D, + D:u)]( Yo~ (”:n - D;-)( ) (BY)
a a a

l
a

n' 21 4 .4 2 2
=|~3 Dy—2n" - By + A [( )+ 1D +in B )} +] = 3 QDL+ D)~ By )
a a « « [7] a
.4 l
+in 5D (et 2Dl ). (BY)
ad’ a
The operators Ly, are:
= a*Ryw?( ) (B10)
= —2iaR W ) —a*R/Q%in( ), (B1Y)
= ~aR (@ +Q°) () +a*RQ( ) (B12)
= Road’Qin( ), (B13)
= (@’Ry—3aR, +2R ) (' + Q%) ( )= (Ry—aR ) 2wn¥( ) (B14)
= (@®Ry=3aR +2R,) 2w ) —in(R, —aR ) (w0’ +Q7)( ) (8135)
= - Rjaw’( ), (B16)
= 2inRy(w® +Q°)( )+ Ryn* + Rya)2icfd( ) — Roya*Qlin( ) = R 2iaQ( ) .. (B17)

= 4nwRQ( )= (Ryn* + R W + Q%) ( ) + Roa*Qn( )+ Ry(* +2°)( )2e (B18)



